1. Two particles P and Q have mass 0.4 kg and 0.6 kg respectively. The particles are initially at rest on a smooth horizontal table. Particle P is given an impulse of magnitude 3 N s in the direction $P Q$.
(a) Find the speed of P immediately before it collides with Q.

Immediately after the collision between P and Q, the speed of Q is $5 \mathrm{~m} \mathrm{~s}^{-1}$.
(b) Show that immediately after the collision P is at rest.
2. Two particles A and B have masses 4 kg and $m \mathrm{~kg}$ respectively. They are moving towards each other in opposite directions on a smooth horizontal table when they collide directly. Immediately before the collision, the speed of A is $5 \mathrm{~m} \mathrm{~s}^{-1}$ and the speed of B is $3 \mathrm{~m} \mathrm{~s}^{-1}$. Immediately after the collision, the direction of motion of A is unchanged and the speed of A is $1 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Find the magnitude of the impulse exerted on A in the collision.

Immediately after the collision, the speed of B is $2 \mathrm{~m} \mathrm{~s}^{-1}$.
(b) Find the value of m.

1. (a) $I=m v \Rightarrow 3=0.4 \times v$
$v=7.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
A1 3
(b)

$\xrightarrow[\text { LM } 0.4]{v} \times 7.5=\xrightarrow[0.4 v+0.6]{5} \times 5$
A1 3
2. (a)

(b) CLM: $4 \times 5-m \times 3=4 \times 1+m \times 2$

M1A1
$\Rightarrow m=\underline{3.2}$
or
$16=m(3+2)$
$\Rightarrow m=\underline{3.2}$

M1A1
DM1A1 4

1. This was done well by the majority of candidates. Part (a) was a straightforward opening question, almost always correctly answered. A few candidates wrote $3=0.4(0-v)$, thus only gaining the method mark. In the second part most knew and could apply appropriately the conservation of momentum principle, with only occasional sign errors. Drawing a clear velocity diagram would have helped candidates who confused 'before' and 'after' velocities. Since it was a 'show that' question it was important that full working was seen in order to achieve full marks. Wordy explanations involving impulses with no equation, tended to achieve no marks.
2. A good starter question enabling most candidates to obtain marks. A significant number of candidates gave an answer of -16 in part (a) rather than giving the magnitude of the impulse and lost a mark.

In part (b) 16 was a common incorrect answer resulting from an incorrect direction of motion for particle B i.e. $4 \times 5-m \times 3=4 \times 1-m \times 2$. A few candidates seemed unconcerned with a negative mass obtained from using $(+m \times 3)$ on the L.H.S. and there were also a few instances of candidates quoting and using the "formula" $m_{1} u_{1}+m_{1} v_{1}=m_{2} u_{2}+m_{2} v_{2}$. It was rare to see correct solutions using Impulse and many included g in their Impulse-Momentum equation.

